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Abstract
Measuring topological invariants is an essential task in characterizing topological phases of matter. They are usually
obtained from the number of edge states due to the bulk-edge correspondence or from interference since they are
integrals of the geometric phases in the energy band. It is commonly believed that the bulk band structures could not
be directly used to obtain the topological invariants. Here, we implement the experimental extraction of Zak phase
from the bulk band structures of a Su-Schrieffer-Heeger (SSH) model in the synthetic frequency dimension. Such
synthetic SSH lattices are constructed in the frequency axis of light, by controlling the coupling strengths between the
symmetric and antisymmetric supermodes of two bichromatically driven rings. We measure the transmission spectra
and obtain the projection of the time-resolved band structure on lattice sites, where a strong contrast between the
non-trivial and trivial topological phases is observed. The topological Zak phase is naturally encoded in the bulk band
structures of the synthetic SSH lattices, which can hence be experimentally extracted from the transmission spectra in
a fiber-based modulated ring platform using a laser with telecom wavelength. Our method of extracting topological
phases from the bulk band structure can be further extended to characterize topological invariants in higher
dimensions, while the exhibited trivial and non-trivial transmission spectra from the topological transition may find
future applications in optical communications.

Introduction
Last few decades have witnessed rapid advances of

topological photonic materials with exotic properties, such
as topologically protected edge states, unidirectional light
transport, high-order topological corner states, topological
defects, novel topological phases and phenomena pro-
duced in combination with synthetic dimensions, non-
equilibrium physics, nonlinearities, non-Hermiticity and
quantum effects, which hold important applications in
integrated photonic devices1–13. The topological phases of
matter can be classified by their topological invar-
iants14–17. For example, the topology of a one-dimensional

(1D) system is characterized by the Zak phase, obtained by
integrating the Berry curvature over the first Brillouin
zone18,19. In the well-known Su-Schriefffer-Heeger (SSH)
model20, the Zak phase can take two values, which are 0
for the topologically trivial case and π for the topologically
non-trivial case, corresponding to the winding numbers of
W ¼ 0 and W ¼ 1, respectively21,22. Probing the Zak
phase in 1D photonic systems including the photonic SSH
model23–29, has been widely demonstrated within several
experimental schemes, such as combining Bloch oscilla-
tions and Ramsey interferometry24, implementing the
mean chiral displacement of a particle’s wavepacket25,
using leaky photonic lattices26, and breaking the chiral
symmetry in extended SSH models27,28. However, due to
identical shapes of the bulk band structure in both
trivial and non-trivial cases for the SSH lattice, the topo-
logical information such as the Zak phase cannot be
directly distinguished from the bulk band structure in the
current platforms30.
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Synthetic frequency dimension constructed by coupling
the frequency degree of freedom of light has manifested as a
powerful platform for creating lattices with artificial con-
nectivities and achieving unusual functionalities that are
hard to be achieved in real space31–38. Interesting physics
associated with the synthetic frequency dimension have been
reported by engineering the connectivity through external
modulations, such as the Hall ladder with the effective
magnetic flux39, the dynamic band structure with the off-
resonant modulation40, non-Hermitian topology with
asymmetric spectral hoppings41,42, and the flat band with the
synthetic stub lattice43, where equally-spaced frequency
modes are coupled with uniform modulations. However,
lattice structures formed by nonuniform connectivities
between sites hold richer physics in real space44–49, which
are only proposed in theory in synthetic space with the
frequency dimension, including non-Hermitian SSH lat-
tices50 and quadrupole higher-order topological insulators51.
Therefore, experimental implementation of such unequal
couplings between lattice sites is crucial to bring those the-
oretical proposals into practice, which may also greatly
promote the development of synthetic frequency dimension
towards constructing more complex lattice structures
beyond geometric dimensionality44–49.
In this work, we demonstrate the extraction of Zak phase

from the bulk band structure of the 1D synthetic SSH
model constructed along the frequency dimension of two
coupled ring resonators. The symmetric and antisymmetric
supermodes in the ring resonator system are connected by
the electro-optic phase modulator (EOM), which provides
bichromatic sinusoidal modulations at different ampli-
tudes. Such configuration can connect multiple photonic
molecules52 and then form a 1D SSH model along the
frequency axis of light, where the topology is characterized
by the Zak phase (0 or π). We show that our system pos-
sesses its unique feature that the identical shapes of the
corresponding band structures under different topological
cases can be broken, due to distinct projections of the band
structures onto superpositions of the two supermodes. We
show that the topological phase information is naturally
encoded in the time-resolved projected band structure,
which can be extracted from the transmission spectra by
choosing the input frequency resonant with the eigenvalue
in the momentum space reciprocal to the frequency
dimension. Such theoretical proposal is then validated in
experiments performed at the telecom wavelength, where
measurements in the non-trivial and trivial phases are
performed by flexibly reversing the modulation strengths in
the bichromatic signal to obtain spectral transmissions. Zak
phase values (~ 0 and 0.98π) are then extracted in different
topological phases. Our scheme to extract Zak phase from
the bulk band structure projected onto supermodes holding
the phase information is fundamentally different from other
systems holding the SSH model24–28, and is universal to

other topological models53–57. Therefore, our work points
out a simple route in exploring topological phases of matter
with experimental feasibility and reconfigurability in the
synthetic frequency dimension, and also holds potential
applications in optical communications.

Results
Construction of synthetic SSH model
To construct the equivalent SSH model in the synthetic

frequency dimension, we start with considering two identical
ring resonators labeled as ring A and ring B in Fig. 1(a). In
the absence of group-velocity dispersion, ring A (B) supports
equally-spaced resonant modes defined as An (Bn) at fre-
quency ωn=ω0+ nΩ [see Fig. 1(b)], where ω0 is the central
frequency, n is the index of the nth mode, and Ω is the free
spectral range (FSR) for ring A (B). Modes An and Bn at the
same n can be coupled by the evanescent wave or the fiber
coupler between the two rings, with coupling strength κ. It
then leads to mode splitting with the hybridization of the
resonant modes at frequency ωn into the symmetric super-
mode Cn at the frequency ωn + κ and the antisymmetric
supermode Dn at the frequency ωn− κ52,58, which thus
constructs unequally spaced synthetic sites in the frequency
dimension alternatively separated by Ω1≡ 2κ and
Ω2≡Ω− 2κ as illustrated in Fig. 1(c). An EOM is placed
only inside ring A with the external bichromatic signal

J tð Þ ¼ 4g1 cos Ω1t þ ϕ1ð Þ þ 4g2 cos Ω2t þ ϕ2ð Þ ð1Þ
where 4g1, 4g2 and ϕ1, ϕ2 are the modulation amplitudes
and phases. One then obtains the corresponding Hamil-
tonian of the system in Fig. 1(a) as

H tð Þ ¼
X
n

ωn aynan þ bynbn
� �þ κ

X
n

aynbn þ bynan
� �

þ
X
n;n0

J tð Þaynan0

ð2Þ
where an and bn (ayn and byn) are the annihilation (creation)
operators for the modes An and Bn, respectively. One
notes that the last term of Eq. (2) indicates that the
applied modulation is off-resonant with resonant modes
in ring A. By replacing an and bn with operators cn ¼
an þ bnð Þ= ffiffiffi

2
p

and dn ¼ an � bnð Þ= ffiffiffi
2

p
, and taking the

rotating-wave approximation, one can rewrite the Hamil-
tonian of Eq. (2) into

HRWA ¼ P
n

ωn þ κð Þcyncn þ
P
n

ωn � κð Þdy
ndn

þP
n

g1e�i 2κtþϕ1ð Þcyndn þ g2e�i Ω�2κð Þtþϕ2½ �dy
ncn�1 þ h:c:

� �

ð3Þ

From Eq. (3), we show the capability of constructing
a lattice with nonuniform connectivities between
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antisymmetric and symmetric supermodes Dn and Cn

with alternating intra-cell and inter-cell hopping strengths
g1 and g2, which is mathematically equivalent with the
conventional 1D spatial SSH model but along the fre-
quency axis of light (f) as shown in Fig. 1(d). Here, cn and
dn (cyn and dy

n) denote the annihilation (creation) operators
for the supermodes Cn and Dn, which hold resonant fre-
quency ωn+ κ and ωn− κ, respectively. With definition
~cn ¼ cnei ωnþκð Þtand ~dn ¼ dnei ωn�κð Þt , Eq. (3) can be trans-
formed to a time-independent Hamiltonian

HRWA;I ¼
X
n

g1e
�iϕ1~cyn~dn þ g2e

�iϕ2~dy
n~cn�1 þ h:c:

� �
ð4Þ

We note that the synthetic SSH lattice here in the fre-
quency dimension is infinite if we ignore the gradual change
of the FSR and the resulting off-resonance coupling between
modes induced by the group velocity dispersion of the
fiber35,59. Given the fact that there is no hard boundary in
the frequency dimension, the infinite synthetic lattice makes
the choice of intra-cell and inter-cell hoppings can be
arbitrary, and different choices can lead to distinct results.
To definitively simulate the topology in a SSH lattice, we
therefore strict to the lattice where a pair of supermodes Dn

and Cn builds a unit cell, so the connection between Cn and
Dn+1 is inter-cell. The topology is then well-defined in this
physical picture. We emphasize that one can certainly
choose the configuration of the SSH lattice other way
around, which gives an opposite topology. However, once
the SSH configuration is fixed and the unit cell is defined, all

the following analysis is consistent and one is possible of
extracting the topological invariant in experiments.
We transfer Eq. (4) into the kf space and obtain the

Hamiltonian of the synthetic lattice as Hkf ¼ 0 G
G� 0

� �
,

where G ¼ Gj jeiφ kfð Þ ¼ g1e�iϕ1 þ g2eikfΩþiϕ2 and φ(kf)=
arg(G) being the argument of G. Here, kf denotes the wave
vector reciprocal to the frequency dimension33,60. The
topology of the synthetic SSH model can be characterized
by the Zak phase following the definition of its spatial
counterpart19

φZak ¼
1
2

Z π

�π

∂φ kf
� �
∂kf

dkf ð5Þ

The Zak phase takes two values, which are φZak= π for
the topologically non-trivial case (g1 < g2) and φZak= 0 for
the trivial case (g1 > g2). The system degrades to a 1D
uniform lattice under the condition g1= g2, which is thus
not considered in the following discussion. The corre-
sponding band structures read

εkf ;m ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ 2g1g2 cos kfΩþ ϕ1 þ ϕ2

� �q
ð6Þ

with eigenstates jψkf ;mi ¼ ðψC
kf ;m

; ψD
kf ;m

ÞT ¼ ð1; me�iφÞT=ffiffiffi
2

p
and m= ±1. ψC

kf ;m
and ψD

kf ;m
are the projections of

eigenstates on two supermodes Ckf and Dkf in the kf space.
Note that φ is a simple notation for the function φ(kf).
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Fig. 1 Configuration of the 1D synthetic SSH model. a Illustration of two identical coupled ring resonators with coupling strength κ, while ring A
undergoes dynamic modulation in the form of J(t) described by Eq. (1). b For an individual ring, ring A (B) supports equally-spaced resonant modes
labeled as An (Bn) at frequency ωn. c After the effective coupling between two rings, the resonant modes in the system split into two symmetric and
antisymmetric supermodes located at ωn ± κ. d The discrete supermodes in ring A are coupled by bichromatic modulation J(t), which can be mapped
into a 1D photonic SSH model along the frequency dimension. The supermodes Cn and Dn act as synthetic lattice sites, with alternating hopping
amplitudes g1 and g2. e–h The analytical band structures of the synthetic SSH model in (d) under different hopping strengths g1 and g2. Inserted: the
corresponding traces of Re(G) and Im(G) as the wave vector evolving through the first Brillouin zone
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Equation (6) indicates that the band structures compose
of one upper (m= 1) and one lower bands (m=−1) as
shown in Fig. 1(e)–(h). The trajectories of the real part
and imaginary part of G as the wave vector sweeping
though the first Brillouin zone (kfΩ= 0→ 2π) are inserted
in Fig. 1(e)–(h), which form circles in the Re(G)− Im(G)
plane, centered at (g1, 0) with radius g2. The topology of
the system can also be captured by seeing whether the
circle passes through the origin, characterized by the
winding number (W ¼ φZak=π), where W ¼ 0 denotes
the trivial case (g1 > g2) and W ¼ 1 denotes the non-trivial
case (g1 < g2). Equation (6) shows that the band structure
is invariant under the exchange of intra-cell and inter-cell
coupling strengths g1 and g2, although this exchange
operation changes the winding number and the Zak
phase, moving the lattice from the topologically non-
trivial regime to the trivial regime [take Fig. 1(e) and (f) for
example]. This invariance or symmetry has made it
challenging to distinguish the two topological phases in
bulk SSH lattices without looking at edge effects30. We
will show later how we overcome this challenge by mea-
suring the optical transmission spectra and obtain the
time-resolved projected band structure40,60, which is the
key idea to determine the Zak phase from the bulk band
structure in this simulated synthetic SSH lattice.

Projected band structure from transmission spectra
To implement our proposal, we use fibers to form two

rings in the experiment, which are coupled through a 2 × 2
fiber coupler as shown in Fig. 2 [see Materials and meth-
ods]. After calibration, the lengths of both rings are 10.2m,
corresponding to a FSR of Ω= 2πvg/L= 2π·20MHz,
where vg is the group velocity and L is the length of the

ring. Without modulation, we observe that the splitting
distance of the two supermodes is about 2π·6.67MHz,
which gives 2κ=Ω/3 and Ω− 2κ= 2Ω/3 [see Fig. S1 in
the Supplementary Information]. To construct the syn-
thetic SSH model, we drive the EOM by a radio frequency
(RF) signal in the form of V1 cos(Ω1t)+V2 cos(Ω2t), where
Ω1= 2π·6.67MHz, Ω2= 2π·13.33MHz, and V1, V2 denote
the staggered modulation strengths.
One can obtain the projected band structure of the

synthetic lattice following several steps through the time-
resolved band structure spectroscopy40,60, as we briefly
summarize here. First, one collects the drop-port trans-
mission spectrum through the output fiber coupler via
linearly scanning the frequency of the input laser source.
If the input laser source at frequency ω is only detuned
around the reference frequency ω0+ κ with detuning
Δω+κ ≡ ω− (ω0+ κ), one can obtain the output field
around the symmetric supermode (Sþκ

out) as [see Eqs.
(S1)–(S9) in the Supplementary Information]

Sþκ
out ¼ �i

γA
2
Sine

�iωt
X
m¼± 1

ψC�
kf ;m

ψC
kf ;m

þ ψD
kf ;m

e2iκt
	 


Δωþκ � εkf ;m þ iγ

������
kf¼t

ð7Þ
where Sin is the input laser source, γ is the total loss, and
γA is the coupling strength between waveguides and ring
A. Note that the reference frequency ω0 (i.e., the 0th
resonant mode in a ring) is chosen dependent on the
scanning frequency of the input laser source. Similarly, if
the input source is detuned around the reference
frequency ω0− κ with detuning Δω−κ ≡ ω− (ω0− κ),
the corresponding output filed around the antisymmetric
supermode (S�κ

out) is

S�κ
out ¼ �i

γA
2
Sine

�iωt
X
m¼± 1

ψD�
kf ;m

ψC
kf ;m

e�2iκt þ ψD
kf ;m

	 

Δω�κ � εkf ;m þ iγ

������
kf ¼t

ð8Þ

The superscripts ±κ label the two excited cases around
ω0 ± κ separately. Here, the wave vector kf serves as a time
variable33,60, due to the discrete translation symmetry
along the synthetic frequency dimension. At time t, the
output field is determined by the eigenvalues and eigen-
states at kf= t [see Supplementary Information]. For a
fixed detuning Δω±κ, the normalized output transmission
(jS ± κ

out=Sinj2) has two peaks at Δω± κ ¼ εkf ;m. Therefore,
one can break the transmission spectrum into time slices
with time window 2π/Ω1, and then stack up these time
slices as a function of the input frequency detuning Δω,
which reveals the time-resolved band structures of the
system. Equations (7) and (8) indicate that if one excites
ring A around ω0+ κ and ω0− κ subsequently by

Laser
AWG

SOA

SOA

E
O

M

PC

EDFA

PD

Oscilloscope

50:50

D
W

D
M

Ring B

Ring A

99
:1

99
:1

Fig. 2 Experimental setup. Ring A and ring B are coupled by a 2 × 2
fiber coupler. EOM: electro-optic phase modulator. SOA:
semiconductor optical amplifier. PC: polarization controller. DWDM:
dense wavelength division multiplexing. AWG: arbitrary waveform
generator. EDFA: erbium-doped optical fiber amplifier. PD:
photodiode
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sweeping the input frequency within one free spectral
range, two groups of asymmetric projected band struc-
tures separated by 2κ along the frequency dimension can
be acquired, which results from the projections of the
band structures onto the superposition of modes Ckf and
Dkf . Note that each group of projected band structures
contains two bands, and the envelope of each band is
determined by Eq. (6).
In the experiment, we consider the condition of V1 <V2,

and plot the projected band structures in Fig. 3(a), (b).
When V1= 1 V and V2= 3 V are applied [see Fig. 3(a)],
two groups of bands are observed at frequency detunings
Δω=Ω/6, while each group contains two dispersive
bands with splitting distance determined by modulation
strengths. Different from the previous work40, here the
time window to break the transmission spectrum 2π/Ω1

equals to three roundtrip time of ring A (3·2π/Ω) due to
the superposition terms in Eqs. (7) and (8), which gives
the periodicity of the projected band structure kfΩ/
2π∈ [0, 3]. We also show the projected band structure for
the condition with V1= 0 V and V2= 3 V in Fig. 3(b),
corresponding to the special case of g2/g1 → ∞ in the SSH
model, which causes the four dispersive bands in Fig. 3(a)
turning into four flat bands. In addition, we exhibit the
simulated bands from Eqs. (7), (8) in Fig. 3(c), (d) under
hopping amplitudes g1= 0.02Ω, g2= 0.06Ω and g1= 0,
g2= 0.06Ω, respectively, which agree with experimental
results.

Zak phase extraction method
Here, we introduce a data-analysis scheme called

resonant method to extract the important topological
phases from the projected band structures in Fig. 3. By
further simplifying Eqs. (7), (8) with eigenstates jψkf ;mi,

we obtain

Sþκ
out ¼ �i

γA
4
Sine

�iωt
X
m¼± 1

1þme2iκt�iφ

Δωþκ � εkf ;m þ iγ

�����
kf ¼t

ð9Þ

S�κ
out ¼ �i

γA
4
Sine

�iωt
X
m¼± 1

1þme�2iκtþiφ

Δω�κ � εkf ;m þ iγ

�����
kf ¼t

ð10Þ

from which one sees that the phase φ [φ(kf)] of the
eigenstates is actually printed in the output field, i.e., the
topological phase information being encoded in the time-
resolved band structure spectroscopy.
We choose one band from Fig. 3(a) indicated by the red

arrow (corresponding tom= 1) as an example and re-plot it
in Fig. 4(a). By taking the input frequency resonant with the
eigenvalue of the chosen band at each kf, one gets Δω± κ ¼
εkf ;m to obtain the most significant contribution to the
output signal and the phase information from only the
chosen band. An intensity parameter S2 ¼ 8γ2 S ± κ

out

�� ��2=
γ2A Sinj j2� � ¼ 1þm cos 2κt � φð Þ½ �kf¼t is defined from
Eqs. (9), (10) by minimizing the denominator for the chosen
m band and neglecting the contribution from the other
band, which can be acquired by taking the maximum output
intensity value of each vertical slice (fixed kf) from the
chosen band. The obtained value S2 is further normalized to
the range of [−1, 1] by using the transform 2S2=S2max � 1 as
shown in Fig. 4(a), which is then used for decoding the
argument φ(kf). Following this line, the argument phase

0.5

–0.5

0

0.5

–0.5

0

30 2
kf Ω / (2π)kf Ω / (2π)

Δ�
 /

 Ω
Δ�

 /
 Ω

130 21

0

1

0

1

b

d

a

c

ExperimentExperiment

TheoryTheory

Fig. 3 Projected band structures under condition of V1 < V2. Experimentally observed projected band structures with modulation amplitudes
a V1= 1 V, V2= 3 V, and b V1= 0 V, V2= 3 V. Red and blue arrows indicate the chosen bands to apply the Zak phase extraction method. Projected
band structures from simulations under coupling strengths c g1= 0.02Ω, g2= 0.06Ω, and d g1= 0, g2= 0.06Ω, with ϕ1= ϕ2= 0
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φ(kf) is deduced as

φ kf
� � ¼ 2κt ± arccos m

2S2

S2max
� 1

� �� 
����
kf¼t

ð11Þ

with periodicity of φ(kf)= φ(kf+ 2π/Ω) determined by
Eq. (6). Both the positive and negative values of the
inverse cosine function should be considered, so that one
can get the full range of the argument within the range of
[−π, π]. The extracted results are shown in Fig. 4(c),
where the orange and green circles represent the acquired
pairs of arguments for taking positive and negative inverse
cosine values, respectively. Afterwards we select out
one argument value from each pair that satisfies the
periodicity of φ(kf) along the horizontal direction, i.e.,
2π/Ω, which is shown by the blue circles in Fig. 4(e). We
then calculate the Zak phase based on Eq. (5) and acquire
φexp
Zak � 0:98π (W � 1). We emphasize that characteriza-

tions of the Zak phase from the other three bands in the
experiment give the same results. We also demonstrate
the Zak phase decoding process for the special case V1= 0
V and V2= 3 V by choosing a lower band labeled by the
blue arrow (m=−1) in Fig. 3(b) and show the results in
Fig. 4(b), (d) and (f). The flat band leads to linearly varied
arguments with wave vector [see Fig. 4(f)] and a Zak phase
of φexp

Zak � 0:975π (W � 1). As comparison, we perform
calculations on theoretical arguments directly from G in
Fig. 4(e), (f) (the red lines), which result in φZak= π in

both cases. The slight discrepancy between the theoretical
and experimental values of the Zak phase is mainly caused
by the insufficient accuracy of experimental equipment,
the inevitable loss from the system, and the disturbance of
the environment, which also cause the extracted phase
not exactly periodic in experiments.
The topology of a SSH lattice changes from non-trivial

to trivial if the ratio between two hopping strengths is
flipped. To show this effect, we perform the Zak phase
measurement under the condition of V1 >V2 corre-
sponding to the trivial case, where projected band struc-
tures in experiments are shown in Fig. 5(a) for V1= 3 V,
V2= 1 V and in Fig. 5(b) for V1= 3 V, V2= 0 V, respec-
tively. The system also exhibits two asymmetric groups of
dispersive bands separated by 2κ=Ω/3 in Fig. 5(a), which
evolves to flat bands in the limit g2/g1 → 0 [see Fig. 5(b)].
The corresponding projected band structures from
simulations are plotted in Fig. 5(c), (d). One can see a
good fit between the simulation results and the experi-
mental measurements. Then, we extract the argument
phases from the chosen bands in Fig. 5(a), (b) by following
the same procedure in Fig. 4 and show the results in
Fig. 5(e), (f) (blue circles), which agree well with the
theoretical values calculated from G (the red lines). The
corresponding Zak phases are integrated as φexp

Zak � 0:05π
and φexp

Zak � 0:03π (W � 0), respectively, while the theo-
retical arguments give ϕZak= 0. Therefore, we show that
our system has the capability for directly decoding the

30 2130 21
kfΩ / (2π)kfΩ / (2π)

�
(k

f)

fe

1

–1

0

d

In
te

ns
ity

 (
a.

u.
)

π

–π

0

�
(k

f)

π

–π

0

c

ba

Fig. 4 Extraction process of the Zak phase under condition of V1 < V2. a, b The normalized maximum intensities S2 of each vertical slice (the
lower panels) extracted from the chosen bands (the upper panels) in Fig. 3(a) (red arrow) and Fig. 3(b) (blue arrow), respectively. c, d The
corresponding calculated arguments φ(kf) from (a) and (b) based on Eq. (11). e, f The selected arguments (blue circles) that satisfy the periodicity of
2π/Ω from (c) and (d), in comparison with the theoretical values of arg(G) (red lines), respectively

Li et al. Light: Science & Applications           (2023) 12:81 Page 6 of 9



topological phase by analyzing the projected band struc-
ture from the transmission spectra.

Discussion
Besides extracting the Zak phase from the bulk band

structure, one can also distinguish the topology of the
system from the distinct band shapes in the topologically
non-trivial case (Fig. 3) and in the trivial case (Fig. 5), which
exhibit very different patterns [also see Fig. S2 in the
Supplementary Information]. The band shapes in Fig. 3
show characters of shorter segments compared to those in
Fig. 5. Unfortunately, the proposed Zak phase extraction
method using the intensity parameter S2 is not applicable
for cases with smaller band gap compared to the total loss
γ including the gapless case at the phase transition point
with V1=V2. The key finding of the synthetic SSH model
here originates from the frequency difference between the
lattice sites in the frequency dimension, which causes
the superposition of two supermodes and the topological
phase information thus encoded in the bulk band. In
addition, the topologically non-trivial and trivial trans-
mission spectra can be converted flexibly by the external
modulation, which brings possible ingredient towards
exploring spectral non-reciprocity in the future61–63, and
hence might bring potential opportunity in achieving
the active optical isolator and circulator operated at the
telecom wavelength64–66. Our proposed method for

characterizing the topological invariant is universal in the
synthetic frequency dimension, and can be used for
studying topology with long-range couplings67,68. The
ability of providing alternating modulations between syn-
thetic lattice sites in experiment therefore offers new
possibility to construct more complex lattice structures
with nonuniform connectivities in the frequency dimen-
sion44–49. Our approach in fiber-based ring system can be
extended to the microring resonators due to the advance of
on-chip integrated photonics69,70. Moreover, our results
exhibit great potentials in linking towards further con-
necting photonic molecules52, and hence hold applications
in photonic computation and quantum systems71,72.
In summary, we implement the experimental mea-

surement of topological Zak phase in a synthetic SSH
model by utilizing the frequency axis of light, constructed
by two coupled ring resonators modulated by bichromatic
signals of different amplitudes. We find that the sig-
natures of the topological invariant characterized by the
Zak phase are imprinted in the distinguishable time-
resolved transmission spectra, which can be extracted by
the proposed resonant method. Quantized Zak phases are
observed for non-trivial and trivial cases, where experi-
mental measurements show excellent agreement with the
results in theory. The main advantage of this method is to
extract the topological invariant directly from the bulk
band structures. With appropriate designs, the spin or
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valley degree of freedom is possible to be included in
models in the synthetic frequency dimension37,38, and
hence the corresponding topological invariant may also
be directly captured. Our work provides the evidence of
directly reading the topological phase from the bulk
band structure and paves a new route to explore
topological phases in higher-dimensional topological
materials51,73–75. For example, one way to construct
higher-dimensional lattices in the synthetic space is to
add long-range connectivities, which can be used to
build higher-dimensional synthetic space76,77. The
superposition of modes along two directions may be
obtained so higher-dimensional topological phases can
be further studied. We anticipate that future researches
in this synthetic frequency platform may find potential
applications with physical phenomena in high dimen-
sions and even bulk-defect responses13 with reconfi-
gurability, scalability, and flexibility.

Materials and methods
The two fiber rings are coupled through a 2 × 2 fiber

coupler with coupling ratio 50:50. We excite ring A by a
tunable laser source (linewidth of 200 kHz) centered at
1550.92 nm, which can be finely scanned over 30 GHz by
applying a ramp signal to its frequency modulation input
module. A 2 × 2 fiber coupler with coupling ratio 99:1
couples 1% of the laser source to ring A, and a second 99:1
fiber coupler couples out 1% of the signal into the output
waveguide for detection. A lithium niobate EOM is placed
inside ring A driven by an arbitrary waveform generator
(200MHz bandwidth). The polarization controller is used
to calibrate the polarization of resonant frequency modes
circling in each ring to the principal axis of EOM. To
achieve a high quality factor, a semiconductor optical
amplifier is utilized for compensating the losses in the
ring, where the amplified spontaneous emission noise is
filtered by a dense wavelength division multiplexing
centered at 1550.92 nm (international telecommunication
union channel 33, 100 GHz bandwidth). The output signal
from ring A is amplified by an erbium-doped optical fiber
amplifier before being sent to a fast InGaAs photodiode
(10 GHz bandwidth) for detection and is then sent to the
oscilloscope (5G samples/s with 1 GHz bandwidth) for
analysis. To guarantee the two rings having the identical
lengths, we also put an unmodulated EOM, and two 2 × 2
fiber couplers with coupling ratio 99:1 in ring B, which are
not plotted in Fig. 2.
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